

B K BIRLA CENTRE FOR EDUCAT

SENIOR SECONDARY CO-ED DAY CUM BOYS' RESIDENTIAL SCHOOL

PRE BOARD - II (2024-25) MATHEMATICS (041) MARKING SCHEME

Section A

1.

(d) 512

Explanation:

Since each element a_{ii} can be filled in two ways (with either '2' or "0'), total number of possible matrices is $8 \times 8 \times 8 = 512$

2.

(d) Null matrix

Explanation:

As we know that, A(adj A) = |A| I.

But it is given that A is a singular matrix

Thus, |A| = 0.

Therefore, A(adj A) = 0I = 0, where 0 is the zero matrix.

Hence, if A is a singular matrix, then A(adj A) = 0.

3.

(d)
$$q = 0$$
, $s = -4$

Explanation:

We have

$$\Delta = \begin{vmatrix} x + x & 2x - 1 & x + 3 \\ 3x + 1 & 2 + x^2 & x^3 - 3 \end{vmatrix} = px^7 + qx^6 + rx^5 + sx^4 + fx^3 + ux^2 + vx + w$$

$$\Rightarrow (x^2 + x) \{ (4x + 2x^3) - (x^5 + 4x^3 - 3x^2 - 12) \} - (3x + 1) \{ (4x^2 - 2x) - (x^3 + 3x^2 + 4x + 12) \} + (x - 3) \{ (2x^4 - x^3 - 6x + 3) - (x^3 + 3x^2 + 2x + 6) \}$$

$$= px^7 + qx^6 + rx^5 + sx^4 + fx^3 + ux^2 + vx + w$$

$$\Rightarrow -x^7 - x^6 + 0x^5 - 4x^4 + 8x^3 + 34x^2 + 75x + 21 = px^7 + qx^6 + rx^5 + sx^4 + fx^3 + ux^2 + vx + w$$

$$p = -1$$
, $q = -1$, $r = 0$, $s = -4$, $t - 8$, $u - 34$, $v = 75$, $w = 21$

4.

(d) -2
$$\tan \left(\frac{3x+4}{5x+6}\right) \times \frac{1}{(5x+6)^2}$$

Explanation

$$-2\tan\left(\frac{3x+4}{5x+6}\right) \times \frac{1}{(5x+6)^2}$$

5.

(c) 90°

Explanation:

To find the angle with the z-axis, we use the relation:

$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$$

where $\alpha=30^\circ$ and $\beta=120^\circ$. Calculating, we get:

$$\cos^2 30^\circ = \frac{3}{4}, \cos^2 120^\circ = \frac{1}{4}$$

Thus,

$$\frac{3}{4} + \frac{1}{4} + \cos^2 \gamma = 1 \Longrightarrow \cos^2 \gamma = 0 \Longrightarrow \gamma = 90^\circ$$
.

So, the angle with the z-axis is 90°.

Eap'anation:

3

7.

(c) linear function

Explanation:

linear function

8.

(b) - 2

Explanation:

Given
$$\vec{a} = 2\hat{i} + 4\hat{j} - \hat{k}$$
 and $\vec{b} = 3\hat{i} - 2\hat{j} + \lambda\hat{k}$ such that $\vec{a} \perp \vec{b}$
 $\therefore 6 \cdot 8 \cdot \lambda = 0 = -2 \cdot \lambda = 0$
 $\Rightarrow \lambda = -2$

9.

(d) tan x

Explanation:

tan x

10.

(c) 4

Explanation:

Here,
$$A = \begin{bmatrix} 5 & 8 & 11 \\ 4 & 5 & 13 \\ 7 & 5 & 5 \end{bmatrix}$$

Thus, number of elements more than 5, is 4.

11.

(d) Option (c)

Explanation:

If a LPP admits two optimal solutions it has an infinite solution.

12.

$$\cos\theta = 3/5$$

$$\therefore \sin\theta = \frac{4}{5}$$

$$\left| \vec{a} x \vec{b} \right| = |a||b| \sin \theta = 16$$

13.

(c)
$$PX = -X$$

Explanation:

Given
$$P' = 2P + I$$

 $\Rightarrow (P')' = (2P + I)' = 2P' + I' = 2P' + I$

$$\Rightarrow P = 2(2P + I) + I = 4P + 2I + I$$

$$\Rightarrow$$
 P = 4P + 3I \Rightarrow -3P = 3I \Rightarrow P = -I

$$\therefore PX = -IX = -X$$

14. (a)
$$\frac{3}{28}$$

Explanation:

Required probability $=\frac{3}{8}\cdot\frac{2}{7}=\frac{3}{28}$

15.

(d)
$$e^y - e^x = \frac{x^3}{3} + C$$

Explanation: We have,
$$\frac{dy}{dx} = e^{x-y} + x^2e^{-y}$$

$$\Rightarrow e^y dy = (e^x + x^2)dx$$

$$\Rightarrow \int e^y dy = \int \left(e^x + x^2\right) dx$$

$$\Rightarrow e^y = e^x + \frac{x^3}{3} + c$$

$$\Rightarrow e^{y} - e^{x} = \frac{e^{x}}{2} + c$$

16.

(d)
$$\frac{1}{\sqrt{6}}$$

Explanation:

$$\frac{1}{\sqrt{6}}$$

17.

Explanation:

[x] is always continuous at non-integer value of x. Hence, f(x) = [x] will be continuous at x = 1.5.

18.

(b) 10

Explanation:

Determinant of these point should be zero

$$\begin{vmatrix}
-1 & 3 & 2 \\
-4 & 2 & -2 \\
5 & 5 & \lambda
\end{vmatrix} = 0$$

$$-1(2\lambda + 10) - 3(-4\lambda + 10) + 2(-20 - 10) = 0$$

$$10\lambda = 10 + 30 + 60 = 100$$

$$\lambda = 10$$

19.

(d) A is false but R is true.

Explanation:

Let
$$f(x) = 2x^3 - 24x$$

$$\Rightarrow$$
 f'(x) = 6x² - 24 = 6(x² - 4)

$$=6(x+2)(x-2)$$

For maxima or minima put f'(x) = 0,

$$\Rightarrow$$
 6(x + 2)(x - 2) = 0

$$\Rightarrow$$
 x = 2, -2

We first consider the interval [1, 3].

So, we have to evaluate the value of f at the critical point $x = 2 \in [1, 3]$ and at the end points of [1, 3].

At
$$x = 1$$
, $f(1) = 2 \times 1^3 - 24 \times 1 = -22$

At
$$x = 2$$
, $f(2) = 2 \times 2^3 - 24 \times 2 = -32$

At
$$x = 3$$
, $f(3) = 2 \times 3^3 - 24 \times 3 = -18$

. The absolute maximum value of f(x) in the interval [1, 3] is -18 occurring at x = 3.

Hence, Assertion is false and Reason is true.

20. (a) Both A and R are true and R is the correct explanation of A. Explanation:

For one to one function, if f(x) = f(y)

then
$$x = y$$

$$\therefore 1 + x_1^2 = 1 + x_2^2$$

$$x_1^2 = x_2^2$$

here, every element in the range maps to only one element in domain.

f(x) is strictly monoatomic function and one to one function.

Section B

21. We know that the range of principal value of $\operatorname{cosec}^{-1}$ is $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ - [0]

Let
$$\csc^{-1}(-1) = \theta$$
. Then we have, $\csc \theta = -1$

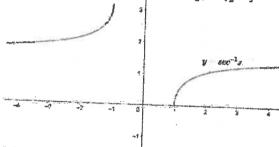
$$cosec \theta = -1 = -cosec \frac{\pi}{2} = cosec \left(\frac{-\pi}{2}\right)$$

$$\therefore \theta = \frac{-\pi}{2} \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]^2 - [0]$$

Hence, the principal value of $\csc^{-1}(-1)$ is equal to $\frac{-\pi}{2}$

OR

Principal value branch of $\sec^1 x$ is $\left[0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right]$ and its graph is shown below.



22. It is given that f(x) = |x + 2| - 1

Now, we can see that
$$|x+2| \ge 0$$
 for every $x \in \mathbb{R}$

$$\Rightarrow f(x) = |x+2| - 1 \ge -1 \text{ for every } x \in \mathbb{R}$$

Clearly, the minimum value of f is attained when
$$|x + 2| = 0$$

i.e,
$$|x + 2| = 0$$

$$\Rightarrow x = -2$$

Then, Minimum value of
$$f = f(-2) = |-2 + 2| - 1 = -1$$

Therefore, function f does not have a maximum value.

23. Here

$$f(x) = \sin x + \sin x \cos x$$

$$\Rightarrow f'(x) = \cos x + \sin x (-\sin x) + \cos x \cos x$$

$$\Rightarrow f'(x) = \cos x - \sin^2 x + \cos^2 x$$

$$\Rightarrow f'(x) = \cos x + \cos^2 x - 1 + \cos^2 x$$

$$\Rightarrow f'(x) = 2\cos^2 x + \cos x - 1$$

$$\Rightarrow f'(x) = 2\cos^2 x + 2\cos x - \cos x - 1$$

$$\Rightarrow f'(x) = 2 \cos x(\cos x + 1) - 1(\cos x + 1)$$

$$\Rightarrow f'(x) = (2\cos x - 1\cos x + 1)$$

for f(x) to be increasing, we must have

$$\Rightarrow (2\cos x - 1)(\cos x + 1) > 0$$

This is only possible when

$$(2\cos x - 1) > 0$$
 and $(\cos x + 1) > 0$

$$\Rightarrow \cos x > \frac{1}{2}$$
 and $\cos x > -1$

$$\Rightarrow x \in \left(0, \frac{\pi}{3}\right) \text{ and } x \in \left(0, \frac{\pi}{3}\right)$$

$$So, x \in \left(0, \frac{\pi}{3}\right)$$

f(x) is increasing on
$$(0, \frac{\pi}{3})$$

For f(x) to be decreasing we, must have $\Rightarrow (2\cos x - 1)(\cos x + 1) < 0$
This is only possible when $(2\cos x - 1) < 0$ and $(\cos x + 1) > 0$
 $\Rightarrow (2\cos x - 1) < 0$ and $(\cos x + 1) > 0$
 $\Rightarrow (2\cos x - 1) < 0$ and $(\cos x + 1) > 0$
 $\Rightarrow \cos x < \frac{1}{2}$ and $\cos x > -1$
 $\Rightarrow x \in (\frac{\pi}{3}, \frac{\pi}{2})$ and $x \in (0, \frac{\pi}{2})$
 $\therefore f(x)$ is decreasing on $(\frac{\pi}{3}, \frac{\pi}{2})$

Let one of the numbers be x. Then the other number is (15-x).

Let S(x) denote the sum of the squares of these numbers. Then

$$S(x) = x^{2} + (15 - x)^{2} = 2x^{2} - 30x + 225$$
or
$$\begin{cases} S'(x) = 4x - 30 \\ S''(x) = 4 \end{cases}$$
Now S'(x) = 0, gives, $x = \frac{15}{2}$.

Also
$$S''\left(\frac{15}{2}\right) = 4 > 0$$
.

Therefore, by second derivative test, $x = \frac{15}{3}$ is the point of local minima of S. Hence the sum of squares of numbers is minimum

Adding (i) and (ii), we

$$2I = \int_0^{\pi} \frac{(x+\pi-x)}{\left(a^2\cos^2 x + b^2\sin^2 x\right)} dx = \pi \int_0^{\pi} \frac{dx}{\left(a^2\cos^2 x + b^2\sin^2 x\right)}$$
 [dividing num. and denim. by $\cos^2 x$]
$$= 2\pi \int_0^{\infty} \frac{dt}{\left(a^2 + b^2 t^2\right)}, \text{ where } \tan x = t$$

$$= \frac{2\pi}{b^2} \int_0^{\infty} \frac{dt}{\left(\frac{a^2}{b^2} + t^2\right)} = \left[\frac{2\pi}{b^2} \cdot \frac{b}{a} \tan^{-1} \left(\frac{bt}{a}\right)\right]_0^{\infty}$$

$$= \frac{2\pi}{ab} \left[\tan^{-1}(\infty) - \tan^{-1}(0)\right] = \frac{2\pi}{ab} \left(\frac{\pi}{2} - 0\right) = \left(\frac{2\pi}{ab} \times \frac{\pi}{2}\right) = \frac{\pi^2}{ab}$$

$$\therefore I = \frac{\pi^2}{2ab} \Rightarrow \int_0^{\pi} \frac{x}{\left(a^2\cos^2 x + b^2\sin^2 x\right)} dx = \frac{\pi^2}{2ab}$$
Given, $f(x) = \log x$

25. Given, $f(x) = \log_a x$

domain of
$$f(x)$$
 is $x > 0$

$$f'(x) = \frac{1}{x} \ln(a)$$

$$\Rightarrow$$
 for a > 1, $\ln(a) > 0$,

hence f'(x) > 0 which means strictly increasing.

$$\Rightarrow$$
 for $0 < a < 1$, $\ln(a) < 0$,

Therefore, f'(x) < 0 which means strictly decreasing.

Section C
26. We have,
$$\frac{(x^2+1)(x^2+2)}{(x^2+3)(x^2+4)} = 1 - \frac{(4x^2+10)}{(x^2+3)(x^2+4)}$$

Let $\frac{(4x^2+10)}{(x^2+3)(x^2+4)} = \frac{4x+B}{(x^2+3)} + \frac{Cx+D}{(x^2+4)}$
 $4x^2+10 = (Ax+B)(x^2+4) + (Cx+D)(x^2+3)$
 $\Rightarrow 4x^2+10 = Ax^3+Ax+Bx^2+AB+Cx^3+3Cx+Dx^2+3D$
 $\Rightarrow 4x^2+10 = (A+C)x^3+(B+D)x^2+(4A+3C)x+(4B+3D)$
Equating the coefficients of x^3 , x^2 , x and constant term, we get, $A+C=0$

$$B+D=4$$

$$4A + 3C = 0$$

$$4B + 3D = 10$$

On solving these equations, we get,

$$A = 0$$
, $B = -2$, $C = 0$ and $D = 6$

Therefore,

$$\frac{(4x^2+10)}{(x^2+3)(x^2+4)} = \frac{-2}{(x^2+3)} + \frac{6}{(x^2+4)}$$

$$\frac{(x^2+1)(x^2+2)}{(x^2+3)(x^2+4)} = 1 - \left(\frac{-2}{(x^2+3)} + \frac{6}{(x^2+4)}\right)$$

$$\int \frac{(x^2+1)(x^2+2)}{(x^2+3)(x^2+4)} dx = \int \left\{1 + \frac{2}{(x^2+3)} - \frac{6}{(x^2+4)}\right\} dx$$

$$= \left\{1 + \frac{2}{x^2+(\sqrt{3})^2} - \frac{6}{(x^2+2)^2}\right\}$$

$$= x + 2\left(\frac{1}{\sqrt{3}}\tan^{-1}\frac{x}{\sqrt{3}}\right) - 6\left(\frac{1}{2}\tan^{-1}\frac{x}{2}\right) + C$$

$$= x + \frac{2}{\sqrt{3}}\tan^{-1}\frac{x}{\sqrt{3}} - 3\tan^{-1}\frac{x}{2} + C$$

- 27. A white ball can be drawn in two mutually exclusive ways:
 - i. By transferring a black ball from bag A to bag B, then drawing a white ball
 - ii. By transferring a white ball from bag A to bag B, then drawing a white ball Consider the following events:

 $E_1 = A$ black ball is transferred from bag A to bag B

 $E_2 = A$ white ball is transferred from bag A to bag B

A = A white ball is drawn

Therefore, we have,

$$P(E_1) = \frac{7}{15}$$

$$P(E_2) = \frac{8}{15}$$

Now,

$$P\left(\frac{A}{E_1}\right) = \frac{5}{10} = \frac{1}{2}$$

$$P\left(\frac{A}{E_2}\right) = \frac{6}{10} = \frac{3}{5}$$

Using the law of total probability, we get

Required probability = $P(A) = P(E_1)P(\frac{A}{E_1}) + P(E_2)(\frac{A}{E_2})$

$$= \frac{7}{15} \times \frac{1}{2} + \frac{8}{15} \times \frac{3}{5}$$

$$= \frac{7}{30} + \frac{8}{25}$$

$$= \frac{35+48}{150} = \frac{83}{150}$$

28. Let the given integral be,

$$\int_0^{\frac{\pi}{2}} |\sin x - \cos x| dx$$

$$= \sqrt{2} \int_0^{\frac{\pi}{2}} \left| \sin x \frac{1}{\sqrt{2}} - \cos x \frac{1}{\sqrt{2}} \right| dx$$

$$= \sqrt{2} \int_0^{\frac{\pi}{2}} \left| \sin x \cos \frac{\pi}{4} - \cos x \sin \frac{\pi}{4} \right| dx$$

$$= \sqrt{2} \int_0^{\frac{\pi}{2}} \left| \sin \left(x - \frac{\pi}{4} \right) \right| dx$$

We have.

$$\begin{vmatrix} \sin\left(x - \frac{\pi}{4}\right) & = \begin{cases} -\sin\left(x - \frac{\pi}{4}\right), & 0 \le x \le \frac{\pi}{4} \\ \sin\left(x - \frac{\pi}{4}\right), & \frac{\pi}{4} \le x \le \frac{\pi}{2} \end{cases}$$

$$\therefore \int_{0}^{\frac{\pi}{2}} |\sin x - \cos x| dx = \sqrt{2} \int_{0}^{\frac{\pi}{4}} -\sin\left(x - \frac{\pi}{4}\right) dx + \sqrt{2} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin\left(x - \frac{\pi}{4}\right) dx$$

$$= \sqrt{2} \left[\cos\left(x - \frac{\pi}{4}\right)\right]_{0}^{\frac{\pi}{4}} - \sqrt{2} \left[\cos\left(x - \frac{\pi}{4}\right)\right]_{\frac{\pi}{4}}^{\frac{\pi}{2}}$$

$$= \sqrt{2} \left[\cos(0) - \cos\left(-\frac{\pi}{4}\right)\right] - \sqrt{2} \left[\cos\left(\frac{\pi}{4}\right) - \cos(0)\right]$$

$$= \sqrt{2} \left(1 - \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} + 1\right)$$

$$= \sqrt{2} \left(2 - \frac{2}{\sqrt{2}} \right) = 2\sqrt{2} - 2 = 2(\sqrt{2} - 1)$$

We can write $\sin 2x = 2\sin x \cdot \cos x$

$$\int e^{\sin x} \sin 2x \, dx = 2 \int e^{\sin x} \cdot \sin x \cos x dx$$

Let Sin x = t

Cos xdx = dt

 $2 \int e^{\sin x} \sin x \cos x dx = 2 \int e^t t dt$

Using BY PARTS METHOD.

$$2\int e^{t} \cdot tdt = 2\left[t\int e^{t}dt - \int \left(\frac{dt}{dt} \cdot \int e^{t}dt\right)dt\right]$$
$$= 2\left[t \cdot e^{t} - \int 1 \cdot e^{t}dt\right]$$

$$= 2\left[t \cdot e^t - e^t\right] + c$$

$$=2e^t(t-1)+c$$

Replacing t with sin x

$$= 2e^{\sin x}(\sin x - 1) + c$$

29. The given differential equation is,

$$\frac{dy}{dx} = \frac{y(2y-x)}{x(2y+x)}$$

The given different
$$\frac{dy}{dx} = \frac{y(2y-x)}{x(2y+x)}$$

$$\Rightarrow \frac{dy}{dx} = \frac{y(2\frac{y}{x}-1)}{x(2\frac{y}{x}+1)}$$

$$\Rightarrow \frac{dy}{dx} = f\left(\frac{y}{x}\right)$$

⇒ the given differential equation is a homogenous equation.

The solution of the given differential equation is:

$$\Rightarrow \frac{d}{dx} = v + x \stackrel{d}{=} x$$

Put
$$y = vx$$

$$\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$$

$$v + x \frac{dv}{dx} = \frac{vx(2\frac{vx}{x} - 1)}{x(2\frac{vx}{x} + 1)} = v\left(\frac{2v - 1}{2v + 1}\right)$$

$$\Rightarrow x \frac{dv}{dx} = v\left(\frac{2v - 1}{2v + 1}\right) - v$$

$$\Rightarrow x \frac{dv}{dx} = \left(\frac{2v^2 - v - 2v^2 - v}{2v + 1}\right)$$

$$\Rightarrow x \frac{dv}{dx} = \frac{-2v}{2v + 1}$$

$$\Rightarrow 2\frac{dv}{dx} = \frac{-2v}{2v + 1}$$

$$\Rightarrow 2\frac{dv}{dx} = \frac{-dx}{x}$$

$$\Rightarrow dy + \left(\frac{1}{x}\right) dy = -\frac{dx}{x}$$

$$\Rightarrow x \frac{dv}{dx} = v \left(\frac{2v-1}{2v+1} \right) - v$$

$$\Rightarrow x \frac{dv}{dx} = \left(\frac{2v^2 - v - 2v^2 - v}{2v + 1}\right)$$

$$\Rightarrow x \frac{dv}{dx} = \frac{-2v}{2v+1}$$

$$\Rightarrow \frac{2v+1}{2v}dv = \frac{-d}{x}$$

$$\Rightarrow dv + \left(\frac{1}{2v}\right) dv = \frac{-dx}{x}$$

Integrating both the sides we get:

$$\Rightarrow \int \left(d\mathbf{v} + \left(\frac{1}{2\mathbf{v}} \right) d\mathbf{v} \right) = -\int \frac{d\mathbf{x}}{\mathbf{x}} + \mathbf{c}$$

$$\Rightarrow \mathbf{v} + \frac{\ln|\mathbf{v}|}{2} = -\ln|\mathbf{x}| + \mathbf{c}$$

$$\Rightarrow$$
 $\mathbf{v} + \frac{\ln|\mathbf{v}|}{3} = -\ln|\mathbf{x}| + c$

Resubstituting the value of y = vx, we get,

$$\Rightarrow \frac{y}{x} + \frac{\ln\left|\frac{y}{x}\right|}{2} = -\ln\left|x\right| + c$$

$$y = 1$$
 when $x = 1$

$$1 + 0 = -0 + c$$

$$\Rightarrow \frac{y}{x} + \frac{1}{2} \log|xy| = 1$$

OR

The given differential equation is,

$$y - x \frac{dy}{dx} = 2\left(1 + x^2 \frac{dy}{dx}\right)$$

$$\Rightarrow y - 2 = 2x^2 \frac{dy}{dx} + x \frac{dy}{dx}$$

$$\Rightarrow y-2=2x^2\frac{dy}{dx}+x\frac{dy}{dx}$$

$$\Rightarrow y - 2 = x \cdot (2x + 1) \stackrel{d}{=}$$

$$\Rightarrow$$
 (y - 2) dx = x (2x + 1) dy

$$\Rightarrow \frac{1}{x(2x+1)}dx = \frac{1}{y-2}dy$$

$$\Rightarrow \int \frac{1}{x(2x+1)}dx = \int \frac{1}{y-2}dy$$

$$\Rightarrow \int \left(\frac{1}{x} - \frac{2}{2x+1}\right)dx = \int \frac{1}{y-2}dy$$

$$\Rightarrow \log |x| - \log |2x + 1| = \log |y - 2| + \log |C|$$

$$\Rightarrow \log \left|\frac{x}{2x+1}\right| - \log |y - 2| = \log |C|$$

$$\Rightarrow \log \left|\frac{x}{2x+1}\right| + \log |y - 2| = \log |C|$$

$$\Rightarrow \log \left|\frac{x}{2x+1}\right| + \frac{1}{y-2}\right| = \log |C|$$

$$\Rightarrow \log \left|\frac{x}{2x+1}\right| + \frac{1}{y-2}\right| = \log |C|$$
It is given that $y(1) = 1$ i.e. $y = 1$ when $x = 1$. Putting $x = 1$ and $y = 1$ in (i), we get
$$\left|\frac{1}{3}\right| = C \Rightarrow C = \frac{1}{3}$$
Putting $C = \frac{1}{3}$ in (i), we get
$$\left|\frac{x}{(2x+1)(y-2)}\right| = \frac{1}{3}$$

$$\Rightarrow \frac{x}{(2x+1)(y-2)} = \pm \frac{1}{3}$$

$$\Rightarrow y - 2 = \pm \frac{3x}{2x+1} \Rightarrow y = 2 \pm \frac{3x}{2x+1}$$
But, $y = 2 + \frac{3x}{2x+1}$ is not satisfied by $y(1) = 1$
Hence, $y = 2 - \frac{3x}{2x+1}$, where $x \neq -\frac{1}{2}$ is the required solution.
The given LPP can be re-written as:

30. The given LPP can be re-written as:

Maximize or Minimize Z = 3x + 5y

Subject to

$$3x - 4y \ge -12$$

$$2x - y \ge -2$$

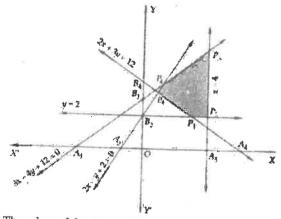
$$2x + 3y \ge 12$$

$$x \le 4$$

$$x \ge 0$$

Converting the inequations into equations, we obtain the following equations 3x - 4y = -1.2, 2x - y = -2, 2x + 3y = 12, x = 4, y = 2

These lines are drawn on suitable scale. The shaded region $P_1P_2P_3P_4P_5$ shown in Figure represents the feasible region of the



The values of the objective function at these points are given in the following table:

Values of the objective function $Z = 3x + 5y$		
$Z = 3 \times 3 + 5 \times 2 = 19$		
$Z = 3 \times 4 + 2 \times 5 = 22$		
$Z = 3 \times 4 + 5 \times 6 = 42$		
$Z = 3 \times \frac{4}{8} + 5 \times \frac{18}{5} = \frac{102}{5}$		

Clearly Z assumes its minimum value 19 at x = 3 and y = 2. The maximum value of Z is 42 at x = 4 and y = 6.

OR

The feasible region (R) is unbounded. Therefore, a minimum of Z may or may not exist. If it exists, it will be at the corner point

Corner Point	Value of Z		
A (12, 0)	3(12) + 2(0) = 36		
B(4, 2)	3(4) + 2(2) = 16		
C(1, 5)	3(1) + 2(5) = 13 (smallest)		
O(0, 10)	3(0) + 2(10) = 20		

Let us graph 3x + 2y < 13. We see that the open half plane determined by 3x + 2y < 13 and R do not have a common point. So, the 31. Given function is

$$f(x) = \begin{cases} |x| + 3, & x \le -3 \\ -2x, & -3 < x < 3 = \begin{cases} -x + 3, x \le -3 \\ -2x, -3 < x < 3 \end{cases} \\ 6x + 2, & x \ge 3 \end{cases}$$
First, we verify continuity at $x = -3$ and then $x = -3$.

First, we verify continuity at x = -3 and then at x = 3

Continuity at x = -3

Continuity at
$$x = -3$$

LHL = $\lim_{x \to (-3)^{-}} f(x) = \lim_{x \to (-3)^{-}} (-x+3)$
 $\Rightarrow \text{ LHL} = \lim_{h \to 0} [-(-3-h)+3]$

= $\lim_{h \to 0} (3+h+3)$

= $3+3=6$

and RHL = $\lim_{x \to (-3)^{+}} f(x) = \lim_{x \to (-3)^{+}} (-2x)$
 $\Rightarrow RHL = \lim_{h \to 0} [-2(-3+h)]$

= $\lim_{h \to 0} (6-2h)$
 $\Rightarrow RHL = 6$

Also, f(-3) = value of f(x) at $x = -3$

$$=-(-3)+3$$

= 3+3=6

: f(x) is continuous at x = -3 So, x = -3 is the point of continuity.

Continuity at
$$x = 3$$

LHL = $\lim_{x \to 3^-} f(x) = \lim_{x \to 3^-} [-(2x)]$

$$\Rightarrow LHL = \lim_{h \to 0} [-2(3-h)]$$
= $\lim_{h \to 0} (-6+2h)$

$$\Rightarrow LHL = -6$$
and RHL = $\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} (6x+2)$

$$\Rightarrow RHL = \lim_{h \to 0} [6(3+h)+2]$$

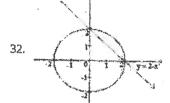
⇒ RHL = 20

∵ LHL ≠ RHL

... f is discontinuous at x = 3 Now, as f(x) is a polynomial function for x < -3, -3 < x < 3 and x > 3 so it is continuous in these intervals.

Hence, only x = 3 is the point of discontinuity of f(x).

Section D



$$x^2 + y^2 = 4 \dots (1)$$

$$x + y = 2...(2)$$

From (2), y = 2 - x

Put this value of y in (1), we get,

$$x^2 + (2 - x)^2 = 4$$

$$\Rightarrow 2x^2 - 4x = 0$$

$$\Rightarrow$$
 2x(x - 2) = 0

$$\Rightarrow x = 0.2$$

When
$$x = 0$$
, $y = 2 - 0 = 2$

When
$$x = 2$$
, $y = 2 - 2 = 0$

 \therefore points of intersection are (0, 2) and (2, 0)

Required area = area of quadrant in first quadrant - area of triangle.

$$= \int_0^2 \sqrt{4 - x^2} dx - \int_0^2 (2 - x) dx$$

$$=\int_0^2 \sqrt{(2)^2-x^2}dx-\int_0^2 (2-x)dx$$

$$= \left[\frac{z}{2}\sqrt{(2)^2 - x^2 + \frac{(2)^2}{2}\sin^{-1}\frac{x}{2}}\right]_0^2 - \left[2x - \frac{x^2}{2}\right]_0^2$$

$$= \left[\frac{2}{2}\sqrt{4 - 4} + \frac{4}{2}\sin^{-1}1\right] - \left[0 + \frac{4}{2}\sin^{-1}0\right] - \left[\left(4 - \frac{4}{2}\right) - (0 - 0)\right]$$

$$= \left(0 + \frac{4}{2} \times \frac{\pi}{2}\right) - (0 + 2 \times 0) - 2 + 0 = \pi - 2$$

33.
$$A = R - \{3\}, B = R - \{1\}$$

$$f: A \to B$$
 is defined as $f(x) = \left(\frac{x-2}{x-3}\right)$.

Let $x, y \in A$ such that f(x) = f(y).

$$\Rightarrow \frac{x-2}{x-3} = \frac{y-2}{y-3}$$

$$\Rightarrow$$
 (x - 2) (y - 3) = (y - 2) (x - 3)

$$\Rightarrow$$
 xy - 3x - 2y + 6 = xy - 3y - 2x + 6

$$\Rightarrow$$
 -3x - 2y = -3y - 2x

$$\Rightarrow$$
 3x - 2x = 3y - 2y

$$\Rightarrow x = y$$

Therefore, f is one-one.

Let
$$y \in B = R - \{1\}$$

Then, $y \neq 1$.

The function f is onto if there exists $x \in A$ such that f(x) = y.

Now,
$$f(x) = y$$

Now,
$$f(x) = y$$

$$\Rightarrow \frac{x-2}{x-3} = y$$

$$\Rightarrow x - 2 = xy - 3y$$

$$\Rightarrow x(1-y) = -3y + 2$$

$$\Rightarrow x(1-y) = -3y + 2$$

$$\Rightarrow x = \frac{2-3y}{1-y} \in A [y \neq 1]$$

Thus, for any $y \in B$, there exists $\frac{2-3y}{1-y} \in A$ such that

$$f\left(\frac{2-3y}{1-y}\right) = \frac{\left(\frac{2-3y}{1-y}\right)-2}{\left(\frac{2-3y}{1-y}\right)-3} = \frac{2-3y-2+2y}{2-3y-3+3y} = \frac{-y}{-1} = y$$

f is onto.

Hence, function f is one-one and onto.

OR

We observe the following properties of f. Injectivity: Let $x, y \in R_0$ such that f(x) = f(y). Then,

$$f(x) = f(y) \Rightarrow \frac{1}{x} = \frac{1}{y} \Rightarrow x = y$$

So, $f: R_0 \to R_0$ is one-one.

Surjectivity: Let y be an arbitrary element of R_0 (co-domain) such that f(x) = y. Then,

$$f(x) = y \Rightarrow \frac{1}{x} = y \Rightarrow x = \frac{1}{y}$$

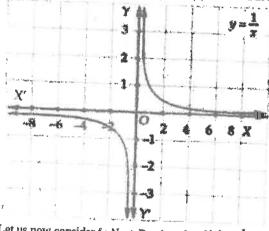
Clearly, $x=\frac{1}{y}\in R_0$ (domain) for all $y\in R_0$ (co-domain).

Thus, for each $y \in R_0$ (co-domain) there exits $x = \frac{1}{y} \in R_0$ (domain) such that $f(x) = \frac{1}{x} = y$

So, $f: R_0 \to R_0$ is onto.

Hence, f: $R_0 \rightarrow R_0$ is one-one onto.

This is also evident from the graph of f(x) as shown in fig.



Let us now consider $f: N \to R_0$ given by $f(x) = \frac{1}{x}$

For any $x, y \in \mathbb{N}$, we find that

$$f(x) = f(y) \Rightarrow \frac{1}{x} = \frac{1}{y} \Rightarrow x = y$$

So, f: $N \rightarrow R_0$ is one-one.

We find that $\frac{2}{3}$, $\frac{3}{5}$ etc. in co-domain R_0 do not have their pre-image in domain N. So, $f: N \to R_0$ is not onto.

Thus, $f: N \to R_0$ is one-one but not onto.

34.

$$|A| = -9$$

$$adjA = \begin{bmatrix} 3 & 4 & -26 \\ 3 & 1 & -11 \\ -3 & -4 & 17 \end{bmatrix}$$

$$A^{-1} = -1/9 \begin{bmatrix} 3 & 4 & -26 \\ 3 & 1 & -11 \\ -3 & -4 & 17 \end{bmatrix}$$

$$X = A^{-1}B = -1/9 \begin{bmatrix} -27 \\ -18 \\ 9 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix}$$

$$X=3$$
, $y=2$, $z=-1$

```
35. Let
     \overrightarrow{a} = l_1 \hat{i} + m_1 \hat{j} + n_1 \hat{k}
     \overrightarrow{b} = l_2 \hat{i} + m_2 \hat{j} + n_2 \hat{k}
    \overrightarrow{d} = (l_1 + l_2 + l_3)\hat{i} + (m_1 + m_2 + m_3)\hat{j} + (n_1 + n_2 + n_3)\hat{k}
    Also, let \alpha, \beta and \gamma are the angles between \overrightarrow{a} and \overrightarrow{d}, \overrightarrow{b} and \overrightarrow{d}, \overrightarrow{c} and \overrightarrow{d}.
   \therefore \cos \alpha = l_1(l_1 + l_2 + l_3) + m_1(m_1 + m_2 + m_3) + n_1(n_1 + n_2 + n_3)
   = l_1^2 + l_1 l_2 + l_1 l_3 + m_1^2 + m_1 m_2 + m_1 m_3 + n_1^3 + n_1 n_2 + n_1 n_3
   = \left(l_1^2 + m_1^2 + n_1^2\right) + \left(l_1l_2 + l_1l_3 + m_1m_2 + m_1m_3 + n_1n_2 + n_1n_3\right)
   = 1 + 0 = 1
   [\because l_1^2 + m_1^2 + n_1^2 = 1 \text{ and } l_1 \bot l_2, l_1 \bot l_3, m_1 \bot m_2, m_1 \bot m_3, n_1 \bot n_2, n_1 \bot n_3]
   Similarly, \cos \beta = l_2(l_1 + l_2 + l_3) + m_2(m_1 + m_2 + m_3) + n_2(n_1 + n_2 + n_3)
   = 1 + 0 = 1 and \cos \gamma = 1 + 0 = 0
   \Rightarrow \cos \alpha = \cos \beta = \cos \gamma
  \Rightarrow \alpha = \beta = \gamma
  So, the line whose direction cosines are proportional to l_1 + l_2 + l_2, m_1 + m_2 + m_3, n_1 + n_2 + n_3 make equal to angles with the
```

three mutually perpendicular lines whose direction cosines are l_1 , m_1 , n_1 , l_2 , m_2 , n_2 and l_3 , m_3 , n_3 respectively. Equation of line in vector form

Line I: $\vec{\mathbf{r}} = (\hat{\imath} - \hat{\jmath} + 0\hat{\mathbf{k}}) + \lambda(2\hat{\imath} + 0\hat{\jmath} + \hat{k})$ Line II: $\vec{\mathbf{r}} = (2\hat{\mathbf{f}} - \hat{\mathbf{j}}) + \mu(\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}})$

Here,

$$\overrightarrow{a_1} = \hat{i} - \hat{j} + 0\hat{k}$$

$$\overrightarrow{a_2} = 2\hat{i} - \hat{j}$$

$$\overrightarrow{b_1} = 2\hat{i} + 0\hat{j} + \hat{k}$$

$$\overrightarrow{b_2} = \hat{i} + \hat{j} - \hat{k}$$

We know that the shortest distance between lines is

We know that the shortest distance between lines is
$$d = \frac{|(\vec{b_2} - \vec{a_1})(\vec{b_1} \times \vec{b_2})|}{|\vec{b_1} \times \vec{b_2}|}$$

$$(\vec{a_2} - \vec{a_1}) = (2\hat{i} - \hat{j}) - (\hat{i} - \hat{j} + 0\hat{k})$$

$$(\vec{a_2} - \vec{a_1}) = \hat{i} + 0\hat{j} + 0\hat{k}$$

$$\vec{b_1} \times \vec{b_2} = \begin{vmatrix} \hat{1} & \hat{j} & \hat{k} \\ 2 & 0 & 1 \\ 1 & 1 & -1 \end{vmatrix}$$

$$\vec{b_1} \times \vec{b_2} = (0 - 1)\hat{i} - (-2 - 1)\hat{j} + (2 - 0)\hat{k}$$

$$\Rightarrow \vec{b_1} \times \vec{b_2} = -\hat{1} + 3\hat{j} + 2\hat{k}$$

$$|\vec{b_1} \times \vec{b_2}| = \sqrt{(-1)^2 + 3^2 + 2^2}$$

$$\Rightarrow |\vec{b_1} \times \vec{b_2}| = \sqrt{14}$$

$$|(\vec{a_2} - \vec{a_1})(\vec{b_1} \times \vec{b_2})| = |(\hat{i} + 0\hat{j} + 0\hat{k})(-\hat{i} + 3\hat{j} + 2\hat{k})|$$

$$\Rightarrow |(\vec{a_2} - \vec{a_1})(\vec{b_1} \times \vec{b_2})| = |(\hat{i} + 0\hat{j} + 0\hat{k})(-\hat{i} + 3\hat{j} + 2\hat{k})|$$

$$\Rightarrow |(\vec{a_2} - \vec{a_1})(\vec{b_1} \times \vec{b_2})| = |(\hat{i} + 0\hat{j} + 0\hat{k})(-\hat{i} + 3\hat{j} + 2\hat{k})|$$

$$\Rightarrow |(\overrightarrow{a_2} - \overrightarrow{a_1})(\overrightarrow{b_1} \times \overrightarrow{b_2})| = 1$$

Substituting these values in the expression,

d =
$$\frac{|(\vec{a}_2 - \vec{a}_1)(\vec{b}_1 \times \vec{b}_2)|}{|\vec{b}_1 \times \vec{b}_2|}$$
d =
$$\frac{1}{\sqrt{14}}$$
d =
$$\frac{1}{\sqrt{14}}$$
 units

Shortest distance d between the lines is not 0. Hence the given lines are not intersecting.

36. i. Let E denote the event that the student has failed in Economics and M denote the event that the student has failed in

$$\therefore P(E) = \frac{50}{100} = \frac{1}{2}, P(M) = \frac{35}{100} = \frac{7}{20} \text{ and } P(E \cap M) = \frac{25}{100} = \frac{1}{4}$$
The probability that the selected student has 6 th M.

The probability that the selected student has failed in Economics if it is known that he has failed in Mathematics. Required probability = $P(\frac{E}{V})$

$$= \frac{P(B \cap M)}{P(M)} = \frac{\frac{1}{4}}{\frac{7}{20}} = \frac{1}{4} \times \frac{20}{7} = \frac{5}{7}$$

ii. Let E denote the event that student has failed in Economics and M denote the event that student has failed in Mathematics. $P(E) = \frac{50}{100} = \frac{1}{2}, P(M) = \frac{35}{100} = \frac{7}{20} \text{ and } P(E \cap M) = \frac{25}{100} = \frac{1}{4}$

The probability that the selected student has failed in Mathematics if it is known that he has failed in Economics.

Required probability = P(M/E)

$$= \frac{P(M \cap E)}{P(E)} = \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2}$$

iii. Let E denote the event that the student has failed in Economics and M denote the event that the student has failed in

:
$$P(E) = \frac{50}{100} = \frac{1}{2}$$
, $P(M) = \frac{35}{100} = \frac{7}{20}$ and $P(E \cap M) = \frac{25}{100} = \frac{1}{4}$

The probability that the selected student has passed in Mathematics if it is known that he has failed in Economics Required probability = P(M'/E)

$$\Rightarrow P(M'/E) = \frac{P(M'\cap E)}{P(E)}$$

$$= \frac{P(E) - P(E\cap M)}{P(E)}$$

$$= \frac{\frac{1}{2} - \frac{1}{4}}{\frac{1}{2}}$$

$$\Rightarrow P(M'/E) = \frac{1}{2}$$

Let E denote the event that the student has failed in Economics and M denote the event that the student has failed in

$$\therefore P(E) = \frac{50}{100} = \frac{1}{2}, P(M) = \frac{35}{100} = \frac{7}{20} \text{ and } P(E \cap M) = \frac{25}{100} = \frac{1}{4}$$
The probability that the selected student has percent in P

The probability that the selected student has passed in Economics if it is known that he has failed in Mathematics

$$\Rightarrow P(E'/M) = \frac{P(E'\cap M)}{P(M)}$$

$$= \frac{P(M) - P(E\cap M)}{P(M)}$$

$$= \frac{\frac{7}{20} - \frac{1}{4}}{\frac{1}{20}} \Rightarrow P(E'/M) = \frac{2}{7}$$

37. i. Total displacement =
$$|\overrightarrow{d_1}| + |\overrightarrow{d_2}| + |\overrightarrow{d_3}|$$

$$|\overrightarrow{d_1}| = \sqrt{6^2 + 8^2}$$

$$|d_1| = \sqrt{6^2 + 8} = \sqrt{36 + 64}$$

$$=\sqrt{100}$$

$$= 10 \, \mathrm{km}$$

$$|\vec{d}_2| = \sqrt{3^2 + 4^2}$$

$$=\sqrt{9+16}$$

$$=\sqrt{25}$$

$$= 5 \, \mathrm{km}$$

$$|\overrightarrow{d_3}| = \sqrt{7^2 + 12^2}$$

$$=\sqrt{49+144}$$

Total displacement = 10 + 5 + 13.89

$$\approx$$
 29 km

iii. Displacement form village to zoo = $d_1 + d_2$

$$= 15 \, \mathrm{km}$$

OR

Displacement from temple to mall = $d_2 + d_3$

$$= 5 + 13.89$$

38. i.
$$f(x) = -0.1x^2 + mx + 98.6$$
, being a polynomial function, is differentiable everywhere, hence, differentiable in (0, 12). At Critical point

At Critical point

$$0 = -0.2 \times 6 + m$$

$$m = 1.2$$

iii.
$$f(x) = -0.1x^2 + 1.2x + 98.6$$

$$f'(x) = -0.2x + 1.2 = -0.2(x - 6)$$

In the Interval	f'(x)	
(0,6)	- (.,	Conclusion
(0, 6)	+Ve	f is strictly in-
(6, 12)	-Ve	f is strictly increasing in [0, 6]
		f is strictly decreasing in [6, 12]

$$f(x) = -0.1x^2 + 1.2x + 98.6,$$

 $f'(x) = -0.2x + 1.2, f'(6) = 0,$
 $f''(x) = -0.2 \cdot$
 $f''(6) = -0.2 < 0$

Hence, by second derivative test 6 is a point of local maximum. The local maximum value = $f(6) = -0.1 \times 6^2 + 1.2 \times 6 + 98.6 =$

We have f(0) = 98.6, f(6) = 102.2, f(12) = 98.6

6 is the point of absolute maximum and the absolute maximum value of the function = 102.2.

0 and 12 both are the points of absolute minimum and the absolute minimum value of the function = 98.6.

· 8